Прибор для определения диэлектрической проницаемости материалов

Радио 2008 №9

Прибор может быть полезным в радиолюбительской практике при оценке диэлектрической проницаемости образцов пластмасс, керамики, других изоляционных материалов, а также специалистам и коллекционерам при идентификации и систематизации образцов минералов. При разнообразии конструкций ёмкостного датчика можно существенно расширить возможности устройства.

Прибор предназначен для определения диэлектрической проницаемости пластмасс, минералов и керамики и идентификации их по этому параметру. Идея создания прибора и разработка датчика принадлежат канд. хим. наук Г. Г. Петржику. Устройство может найти применение у радиолюбителей и специалистов, занимающихся сбором, коллекционированием и обработкой минералов. Принцип определения диэлектрической проницаемости основан на увеличении ёмкости датчика при плотном соприкосновении его поверхности со шлифованной поверхностью диэлектрика (минерала) и соответствующем увеличении коэффициента передачи высокочастотного сигнала в измерительной цепи с этим ёмкостным датчиком.

image

Рис.1

На рис. 1 показана электрическая схема прибора. На транзисторе VT1, катушке индуктивности L2, конденсаторах С1-С3 и резисторах R1- R3 собран генератор гармонических колебаний с частотой около 2,5 МГц. С выхода генератора сигнал поступает на один электрод гребенчатой структуры ёмкостного датчика В1. С другого подобного электрода наводимый через ёмкость датчика сигнал поступает на детектор, выполненный на диоде VD1 и интегрирующей RC-цепи R10C9. Этот детектор отличается относительно низким входным сопротивлением и поэтому мало подвержен ВЧ наводкам и помехам. Минимизации наводок от сети на датчик служит и дроссель L3, представляющий для низких частот малое сопротивление. Выпрямленное напряжение на входе аналого-цифрового преобразователя почти пропорционально диэлектрической проницаемости подложки датчика и расположенного на датчике образца материала. АЦП с 3,5-разрядным цифровым ЖК индикатором (HG1) выполняет роль милливольтметра. Инвертор на транзисторе VT2 создаёт сигнал, необходимый для высвечивания точки между вторым и третьим знаками индикатора. Максимальное значение диэлектрической проницаемости, показываемое индикатором, равно 19,99.

Питание прибора - автономное от батареи "Корунд" или аккумуляторной батареи на напряжение 9 В (например, "Ника", 7Д-0125Д).

image

Рис.2

На рис. 2 представлен эскиз конструкции измерителя диэлектрической проницаемости с ёмкостным датчиком, который расположен снаружи пластмассового корпуса с размерами 80x70x35 мм, использованного автором от антенного усилителя (ТАУ-1). Второй вариант конструкции отличается от показанного на рис. 2 тем, что датчик расположен со стороны, противоположной индикатору. В этом случае прибор оказывается удобно накладывать на крупный массив идентифицируемого минерала сверху.

Внутри корпуса прибора расположены батарея питания и печатная плата с остальными элементами устройства - с одной стороны платы, и ЖК индикатор - с другой. Для индикатора и датчика в корпусе вырезаны прямоугольные отверстия соответствующих размеров. Отверстия для регулировки подстроечных резисторов должны быть доступны и расположены так, чтобы при калибровке не мешать расположению образца на поверхности датчика и наблюдению за показаниями.

Пластина ёмкостного датчика В1 выполнена из односторонне фольгированного стеклотекстолита с вытравленными или вырезанными из металлизации обкладками с шириной проводников и зазоров между ними 0,8...1 мм при ширине "гребёнок" 8...10 мм. Датчик прикреплён к корпусу потайными винтами М2,5 на изоляционных втулках высотой 8...10 мм. Возможны и другие варианты крепления датчика. Внутри корпуса между датчиком и электронным блоком на расстоянии не ближе 10 мм нужно поместить электрический экран из бронзовой или медной фольги для уменьшения влияния рук на показания при калибровке и измерении. Провода, соединяющие датчик с устройством, и головки винтов не должны выступать над гребёнками. Наложенный на датчик образец исследуемого материала должен закрывать всю поверхность "гребёнки".

Колебательный контур генератора выполнен на основе дросселя ДПМ-0,1 (L2) и конденсаторов С2, С3. Катушка связи L1 имеет 20 витков провода ПЭЛШО 0,15, намотанного поверх катушки дросселя. Такой же дроссель использован в качестве индуктивности L3.

Конденсаторы С1-С3, С7, С9, С11, С12 - слюдяные, керамические термостабильных групп ТКЕ (т. е. кроме Н10-Н90) или плёночные группы К73; С5, С8 - тоже керамические.

Вместо диода Д9Е можно использовать другой германиевый - например, Д18, ГД503А.

Перед началом измерений прибор необходимо откалибровать, для чего, включив питание, с помощью подстроенных резисторов R4, R7, выведенных в отверстия в корпусе для регулировки под шлиц, добиваются показаний индикатора, соответствующих относительной диэлектрической проницаемости воздуха еr = 1 и образца материала с известным значением параметра еr. Напряжение постоянного тока на выходе детектора должно быть в пределах, достаточных для установки подстроечным резистором R4 показаний индикатора в трёх разрядах - 1,00. Затем, приложив плотно к датчику гладкую (шлифованную) поверхность образца материала с известной диэлектрической проницаемостью, имеющей небольшой разброс (например, гетинакс - его еr = 5), посредством подстроечного резистора R7 выставить показания ЖК индикатора в соответствии со значением диэлектрической проницаемости выбранного калибровочного материала. Повторяя калибровку подстройкой резистора R4, добиваются уточнения показаний, соответствующих значениям диэлектрической проницаемости воздуха и используемого образца. Поверхности идентифицируемых материалов, имеющие площадь касания меньше размеров датчика, должны быть одинаковыми по толщине и площади с образцом, используемым для калибровки. В иных условиях и задачах датчик может иметь другую конструкцию, обусловленную формой, размерами и физическим состоянием образцов.

Материалы и вещества

еr

Парафин

1,9...2,2

Фторопласт 4

2...2,1

Полиэтилен ВД

2,2...2,3

Полистирол

2,4

Эбонит

2...3,5

Канифоль

2,6

Янтарь

2,8

Шеллак

2,7...3,7

Электрокартон

3,5...5

Кварцевое стекло

3,7

Вулканизированная фибра

4,1

Кварц

4,5...4,7

Гетинакс

5,0

Фарфор

5,4...6,4

Слюда

7,0

Мрамор

8,5

Стекла

5...16

В качестве материалов калибровочного образца можно также рекомендовать полистирол, оргстекло, мрамор (в таблице указаны значения относительной диэлектрической проницаемости твёрдых диэлектрических материалов, используемых, в частности, в радиотехнике и электронике). Для указанных размеров ёмкостного датчика толщина исследуемого диэлектрика должна быть не менее 5 мм, иначе реальное значение параметра окажется заниженным.

От редакции. Прибором фактически проводят относительные измерения, сравнивая диэлектрические свойства известного диэлектрика и образца исследуемого материала. Чем ближе они по значению оцениваемого параметра, тем меньше погрешность в измерении параметра; близкие размеры и просушка образцов также способствуют повышению точности показаний.

Л. КОМПАНЕНКО, г. Москва


BACK


Hosted by uCoz